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INDENTATION OF A PUNCH WITH A FINE-GRAINED BASE

INTO AN ELASTIC FOUNDATION

UDC 539.3I. I. Argatov

The linear contact problem for a system of small punches located periodically on a part of the
boundary of an elastic foundation is studied. An averaged contact problem is derived using the
Marchenko–Khruslov averaging theory. An asymptotic formula is obtained for the translational ca-
pacity of a smooth punch with a fine-grained flat base.

Key words: discrete contact, averaged contact pressure, fine-grained base.

1. Formulation of the Problem. We consider a bounded domain G on the plane R2 with a smooth
boundary. Let l be the characteristic dimension of the region, and let ω be a plane region bounded by a smooth
contour inside the square K = (−l/2, l/2)× (−l/2, l/2). We set

ωij(ε) = {(x1, x2): ε−2(x1 − iεl, x2 − jεl) ∈ ω} (i, j ∈ Z), (1.1)

where ε is a small positive parameter. We denote by Γε the set of all spots ωij(ε) located in the domain G.
In accordance with the Papkovich–Neuber representation (see, e.g., [1]), the linear contact elastic problem

of a punch with a smooth flat base that occupies the set Γε and is indented into an elastic half-space to unit depth
reduces to the following mixed boundary-value problem of the theory of harmonic functions:

∆xuε(x) = 0, x ∈ R3
+ = {x = (x1, x2, x3): x3 > 0}; (1.2)

uε(x′, 0) = 1, x′ = (x1, x2) ∈ Γε; (1.3)

∂uε

∂x3
(x′, 0) = 0, x′ ∈ R2 \ Γε; (1.4)

uε(x) = o(1), |x| = (x2
1 + x2

2 + x2
3)

1/2 →∞. (1.5)

In this case, the displacement-vector components U ε = (Uε
1 , Uε

2 , Uε
3 ) for the points of the elastic half-space are

expressed in terms of the potential uε by Belyaev’s formulas [2]

Uε
i (x) = α

[
(α−1 − 1)

∞∫
x3

∂uε

∂x3
(x1, x2, z) dz − x3

∂uε

∂xi
(x)

]
, i = 1, 2; (1.6)

Uε
3 (x) = uε(x)− αx3

∂uε

∂x3
(x), α = [2(1− ν)]−1. (1.7)

Accordingly, the contact pressure on the boundary of the elastic semi-infinite body exerted by the punch Γε is given
by

pε(x1, x2) = − E

2(1− ν2)
∂uε

∂x3
(x′, 0) (x′ ∈ Γε), (1.8)
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where E and ν are Young’s modulus and Poisson’s ratio, respectively. We note that the maximum principle for
harmonic functions (see, e.g., [3]) implies the inequality

∂uε

∂x3
(x′, 0) < 0 (x′ ∈ Γε), (1.9)

which ensures a positive contact pressure (1.8).
For |x| → ∞, the following asymptotic formula [which refines formula (1.5)] holds:

uε(x) = cε|x|−1 + O(|x|−2).

Here cε = cap (Γε) is the harmonic capacity of the set Γε = {x: x′ ∈ Γε, x3 = 0} (see, e.g., [4, 5]), given by

cε = − 1
2π

∫ ∫
Γε

∂uε

∂x3
(x′, 0) dx′ =

1
2π

∫ ∫ ∫
R3

+

|∇xuε(x)|2 dx. (1.10)

We note that Γε is a plane three-dimensional set and Γε is its two-dimensional image on the plane x3 = 0.
In accordance with the electrostatic analogy [1], the quantity cε is called the translational capacity of a

punch with a smooth flat base Γε [6]. For the punch Γε indented to a depth δ0, the magnitude of the contact force
is given by

F3 =
∫ ∫
Γε

pε(x1, x2) dx′. (1.11)

Using formulas (1.8) and (1.10), we obtain

F3 =
πE

1− ν2
cεδ0.

Let us study the behavior of the solution uε(x) of problem (1.2)–(1.5) for ε → 0 using the Marchenko–
Khruslov theory [7, 8]. It should be noted that the approach of [7, 8] does not require periodicity of the set Γε.
However, the doubly periodic location of the contact spots ωij(ε) in the domain G simplifies the calculations
substantially without loss of generality.

The contact problem for a system of closely spaced small punches located periodically in a bounded region
on the surface of an elastic half-space was studied in [9] using the following assumptions [compare with (1.1)]:

ωij(ε) = {x′: ε−1(x1 − iεl, x2 − jεl) ∈ ω}, i, j ∈ Z. (1.12)

In other words, the diameters of the contact spots and the distance between neighboring punches were assumed in
[9] to be of the same order.

In the case considered (1.1), unlike in [9], the diameters of the contact spots are assumed to be small
compared to the distance between them. As in [9], we obtain the following estimate for the number of contact
spots N in the set Γε for ε → 0:

N ∼ |G|/(ε2l2), (1.13)

where |G| is the area of the domain G.
The contact problems for a finite number of small punches were Extensively studied (see, e.g., [1, 10] and

a survey [11]). The solution of the contact problem (1.2)–(1.5) can be used to solve some contact problems of
tribology [12].

2. Averaged Problem. Extending the function uε(x) to the entire space R3 for evenness and taking into
account the homogeneous boundary condition (1.4), we obtain the relations

∆xuε(x) = 0, x ∈ R3 \ Γε; (2.1)

uε(x′, 0) = 1, x ∈ Γε. (2.2)

In [7, 8], it was found that as ε → 0, the solution uε(x) of problem (2.1), (2.2), (1.5) converges to a function
u0(x) that is the solution of the problem (see [8, Theorem 1.4]):

∆xu0(x) = 0, x ∈ R3 \G; (2.3)
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u0(x′, 0+) = u0(x′, 0−) = u0(x′, 0);

∂u0

∂x3
(x′, 0+)− ∂u0

∂x3
(x′, 0−) = 4πcΓ(u0(x′, 0)− 1), x ∈ G; (2.4)

u0(x) = o(1), |x| → ∞. (2.5)

Here G = {x: x′ ∈ G, x3 = 0}. In this case, the convergence is uniform outside any fixed neighborhood of the
surface G. For the examined periodic set Γε, the quantity cΓ has the form

cΓ = cap (ω)/l2, (2.6)

where cap (ω) is the harmonic capacity of the set ω = {x: x′ ∈ ω, x3 = 0}.
The solution u0(x) of the averaged problem (2.3)–(2.5) satisfies the evenness condition for the variable x3,

i.e., u0(x′, x3) = u0(x′,−x3), since relations (2.3)–(2.5) are invariant under replacement of x3 by −x3. Thus, the
function u0(x), which vanishes at infinity and is harmonic in the half-space R3

+, satisfies the following relations on
its boundary:

−∂u0

∂x3
(x′, 0+) = 2πcΓ(1− u0(x′, 0)), x′ ∈ G; (2.7)

∂u0

∂x3
(x′, 0+) = 0, x′ ∈ R2 \G.

The following asymptotic formula is valid

u0(x) = c0|x|−1 + O(|x|−2), |x| → ∞.

The constant c0 has the form

c0 = − 1
2π

∫ ∫
G

∂u0

∂x3
(x′, 0+) dx′. (2.8)

Using Green’s formula ∫ ∫ ∫
R3

+

|∇xu0(x)|2 dx = −
∫ ∫

G

u0(x′, 0)
∂u0

∂x3
(x′, 0+) dx′,

from relation (2.8) we obtain the representation

c0 =
1
2π

∫ ∫ ∫
R3

+

|∇xu0(x)|2 dx− 1
2π

∫ ∫
G

(1− u0(x′, 0))
∂u0

∂x3
(x′, 0+) dx′. (2.9)

Since or reasonably large values of |x|, the solution uε(x) of the starting problem (1.2)–(1.5) converges
uniformly to the solution u0(x) of the averaged problem (2.3)–(2.5) as ε → 0 f, the following limiting relation
holds:

lim
ε→0

cε = c0.

It is worth noting that formula (2.8) can be regarded as the result of the passage to the limit in the first
integral in formula (1.10), whereas it is obvious that relation (2.9) cannot be derived by setting ε = 0 in the second
integral in formula (1.10). We note that the solution of problem (1.2)–(1.5) satisfies the equality

(1− uε(x′, 0))
∂uε

∂x3
(x′, 0+) = 0, x′ ∈ G.

The reason is that the function uε(x) does not converge to the function u0(x) in the energy norm (see [8, p. 134]).
3. Contact Pressure. The solution of problem (1.2)–(1.5) can be represented in the form of a single-layer

potential (see, e.g., [5])

uε(x) =
1
2π

∑
i,j

∫ ∫
ωij(ε)

ϕij
ε (y1, y2) dy1 dy2√

(x1 − y1)2 + (x2 − y2)2 + x2
3

, (3.1)

766



where the summation is performed over the subscripts i and j for which ωij(ε) ⊂ Γε. In this case, the limiting value
of the normal derivative is given by

−∂uε

∂x3
(x′, 0+) = ϕij

ε (x′), x′ ∈ ωij(ε).

Consequently, by virtue of inequality (1.9), the densities ϕij
ε (x′) of the integrals in the sum in (3.1) are positive.

The function ϕij
ε (x′) coincides [with accuracy up to the factor [2(1−ν2)]−1E] with the density of the contact

pressure pε(x1, x2) distributed over the contact spot ωij(ε) [see formula (1.8)]. Accordingly, the quantity

F ij
ε =

∫ ∫
ωij(ε)

ϕij
ε (y) dy (3.2)

defines the force

P ij
ε =

E

2(1− ν2)
F ij

ε , (3.3)

exerted on the punch ωij(ε) with accuracy up to the above-mentioned factor.
According to the boundary condition (1.3), the densities ϕij

ε (x′) satisfy the system of integral equations of
the first kind

(Bij
ε ϕij

ε )(x′) +
∑
k,l

′
(Bkl

ε ϕkl
ε )(x′) = 1, x′ ∈ ωij(ε). (3.4)

Here the summation is performed over the subscripts k and l for which ωkl(ε) ⊂ Γε, the prime at the sum indicates
that (k, l) 6= (i, j), and Bij

ε is an integral operator defined by

(Bij
ε ϕ)(x′) =

1
2π

∫ ∫
ωij(ε)

ϕ(y) dy√
(x1 − y1)2 + (x2 − y2)2

. (3.5)

To estimate quantity (3.2), we use Mossakovskii’s theorem [13], namely: we denote by ϕ̂ij
ε (x′) the solution

of the contact problem of a single punch ωij(ε) indented to unit depth, i.e., the solution of the integral equation
(Bij

ε ϕ̂ij
ε )(x′) = 1 for x′ ∈ ωij(ε). We multiply both sides of Eq. (3.3) by the density ϕ̂ij

ε (x′) and integrate over the
site ωij(ε). By virtue of the symmetric kernel of operator (3.5), we obtain∫ ∫

ωij(ε)

(Bij
ε ϕij

ε )(y)ϕ̂ij
ε (y) dy =

∫ ∫
ωij(ε)

ϕij
ε (y)(Bij

ε ϕ̂ij
ε )(y) dy.

As a result, we arrive at the equality

F ij
ε +

∑
k,l

′
∫ ∫
ωij(ε)

(Bkl
ε ϕkl

ε )(y)ϕ̂ij
ε (y) dy = 2πcij

ε , (3.6)

where cij
ε is the translational capacity of the punch ωij(ε), i.e.,

cij
ε =

1
2π

∫ ∫
ωij(ε)

ϕ̂ij
ε (y) dy. (3.7)

Finally, taking into account the positiveness of the densities ϕkl
ε (x′) for x′ ∈ ωkl(ε) and ϕ̂ij

ε (x′) for x′ ∈ ωij(ε)
and the positiveness of the kernel of operator (3.5), from relation (3.6) we obtain the estimate

F ij
ε < 2πcij

ε . (3.8)

According to the adopted assumptions on the set Γε, the following limiting relation holds for any segment g

of the domain G:

lim
ε→0

∑
(g)

cij
ε = |g|cΓ. (3.9)

Here |g| is the area of the site g, the sum
∑

(g) is taken over those contact spots ωij(ε) that lie inside the domain g

and cΓ is the quantity defined by formula (2.6). Indeed, to prove relation (3.8), one should take into account the
equalities
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cij
ε = ε2 cap (ω),

∑
(g)

cij
ε = Nεε

2 cap (ω), (3.10)

where Nε is the number of contact spots that lie within the domain g and Nε ∼ |g|(ε2l2)−1.
Thus, with allowance for inequality (3.7) and condition (3.8), we obtain

lim
ε→0

∑
(g)

F ij
ε 6 2π|g|cΓ. (3.11)

Therefore (see [8, § 1]), the densities ϕij
ε (x′) and x′ ∈ Γε converge slowly to the limited density ϕ0(x′)

distributed over the surface G. In this case, for a fixed point x ∈ R3
+, we obtain

lim
ε→0

uε(x) =
1
2π

∫ ∫
G

ϕ0(y) dy√
(x1 − y1)2 + (x2 − y2)2 + x2

3

and the limit

lim
ε→0

∑
(g)

F ij
ε =

∫ ∫
g

ϕ0(y) dy (3.12)

exists for any part g of the region G.
Formula (3.12) shows the mechanical sense of the function ϕ0(x′), namely, the function

p0(x1, x2) =
E

2(1− ν2)
ϕ0(x1, x2) [x1, x2) ∈ G] (3.13)

is the averaged contact pressure. In other words, for any segment g of the domain G, we have the limiting relation∫ ∫
g

p0(y) dy = lim
ε→0

∑
(g)

∫ ∫
ωij(ε)

pε(y) dy. (3.14)

However, the pressure from the punch Γε to the surface of the elastic half-space is transmitted through the
contact spots ωij(ε). Aa approximate expression for the contact pressure on the contact spot ωij(ε) can be obtained
using the solution ϕ̂ij

ε (x′) of the contact problem of a single punch. The reason for this is that as ε → 0, the relative
distance between neighboring punches increases without bound (compared to their diameters).

Thus, using relation (3.12) for the punch ωij(ε) with center at the point (xi
1, x

j
2) with the coordinates xi

1 = iεl

and xj
2 = jεl, we have

F ij
ε

ε2l2
' ϕ0(xi

1, x
j
2), ε → 0. (3.15)

From formula (3.7), the total load transmitted from the single punch ωij(ε) to the elastic half-space is given by

P̂ ij
ε =

E

2(1− ν2)
F̂ ij

ε ,

where

F̂ ij
ε =

∫ ∫
ωij(ε)

ϕ̂ij
ε (y) dy = 2πcij

ε . (3.16)

Hence, the density (2πcij
ε )−1F̂ ij

ε ϕ̂ij
ε (x′) corresponds to the total load P ij

ε defined by formula (3.3). Therefore, the
contact pressure on the contact spot ωij(ε) is given by

pε(x1, x2) '
E

2(1− ν2)
F ij

ε

2πcij
ε

ϕ̂ij
ε (x1, x2), (x1, x2) ∈ ωij(ε). (3.17)

Taking into account relations (3.10), (3.13), and (3.15), we finally obtain

pε(x1, x2) '
l2

2π cap (ω)
p0(xi

1, x
j
2)ϕ̂

ij
ε (x1, x2), (x1, x2) ∈ ωij(ε), (3.18)

where ϕ̂ij
ε (x′) is the solution of the integral equation (Bij

ε ϕ̂ij
ε )(x′) = 1 for x′ ∈ ωij(ε).
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4. Equation for Determining the Averaged Contact Pressure. To obtain an approximate solution
of the integral equations (3.4), we use the localization method [12]. The second term on the left side of Eq. (3.4),
which describes the effect of the punches of the system Γε on the contact-pressure distribution under the punch ωij

ε

is approximated by averaging the contact pressure as follows:

(Bij
ε ϕij

ε )(x′) +
1
2π

∫ ∫
G\Kij

ε

ϕ0(y) dy√
(x1 − y1)2 + (x2 − y2)2

= 1, x′ ∈ ωij(ε). (4.1)

Here Kij
ε is a square with side εl and center at the point (xi

1, x
j
2).

Next, according to formula (3.17),

ϕij
ε (x′) =

F ij
ε

2πcij
ε

ϕ̂ij
ε (x′), x′ ∈ ωij(ε).

Substituting this expression into Eq. (4.1), with accuracy up to terms of order ε, we obtain

F ij
ε

2πcij
ε

+
1
2π

∫ ∫
G

ϕ0(y) dy√
(x1 − y1)2 + (x2 − y2)2

= 1, x′ ∈ ωij(ε).

Taking into account relation (3.15), we have

ε2l2

2πcij
ε

ϕ0(xi
1, x

j
2) +

1
2π

∫ ∫
G

ϕ0(y) dy√
(xi

1 − y1)2 + (xj
2 − y2)2

= 1. (4.2)

Because the point (xi
1, x

j
2) is taken arbitrarily, using the first formula (3.10) and Eq. (4.2), we obtain

l2

2π cap (ω)
ϕ0(x1, x2) +

1
2π

∫ ∫
G

ϕ0(y) dy√
(x1 − y1)2 + (x2 − y2)2

= 1. (4.3)

Thus, according to formulas (4.3) and (2.6), the averaged contact-pressure density (3.13) satisfies the integral
equation

1
cΓ

p0(x1, x2) +
∫ ∫

G

p0(y) dy√
(x1 − y1)2 + (x2 − y2)2

=
πE

1− ν2
. (4.4)

It is easy to see that Eq. (4.4) or, what is the same, Eq. (4.3) is equivalent to boundary condition (2.7).
The positiveness condition for the contact pressure on the contact spots (1.9) and the limiting relation (3.14)

with allowance for (3.9) lead to the inequality

p0(x1, x2) > 0, (x1, x2) ∈ G. (4.5)

Therefore, according to relations (4.3) and (4.5), the quantity u0(x1, x2, 0), which is interpreted as the averaged
displacement of the elastic-foundation surface under the punch with the fine-grained base Γε is smaller than the
punch displacement, i.e.,

u0(x1, x2, 0) < 1, (x1, x2) ∈ G.

Hence, the second term in formula (2.9) is positive.
5. Generalizations and Remarks. 1. For a punch Γε with a nonflat base, boundary condition (1.3)

should be replaced by the relation

uε(x′, 0) = w(x′), x′ = (x1, x2) ∈ Γε. (5.1)

Here w(x1, x2) is a smooth function that defines the displacement of the elastic-foundation surface under the punch.
In particular, the function w(x′) = δ0 − β2x1 + β1x2 corresponds to an inclined punch with a fine-grained flat base
(δ0 is the translational displacement and β1 and β2 are the angles of rotation about horizontal axes).

According to the Marchenko–Khruslov theory (see [8, Theorem 1.4]), the boundary condition (5.1) corre-
sponds to the following averaged boundary condition [instead of (2.7)]:

−∂u0

∂x3
(x′, 0+) = 2πcΓ(w(x′)− u0(x′, 0)), x′ ∈ G. (5.2)
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In this case, the averaged contact-pressure density is found by solving the integral equation [instead of Eq. (4.4)]

1
cΓ

p0(x1, x2) +
∫ ∫

G

p0(y) dy√
(x1 − y1)2 + (x2 − y2)2

=
πE

1− ν2
w(x1, x2). (5.3)

For the integral equation (5.3), various methods of solution have been proposed (see a survey [14, § 3.5.1]).
It is clear that for an arbitrary right side of Eq. (5.3), its solution does not satisfy the positiveness condition (4.5).
In addition, the solution of the integral equation (4.4) has no singularity at the boundary of the domain G.

2. The averaged contact problem (5.3) remains valid if the contact spots ωij(ε) in the set Γε are expanded
arbitrarily. Moreover, the results of the theory of [7, 8] are valid for weaker constraints on the structure of the
fine-grained boundary Γε. For example, we can discard the assumption of periodicity and take into account the
dependence of the contact spots on slow variables. The assumption of periodicity was used to simplify the calculation
of the coefficient cΓ.

In the particular case where the contact spots ωij(ε) are located at the nodes of an oblique grid with sides
εl1 and εl2 and an angle α, we obtain

cΓ = cap (ω)/(l1l2 sinα). (5.4)

For a hexagonal grid with an internodal distance εl, we have

cΓ =
8

3
√

3
cap (ω)

l2
. (5.5)

For the contact spots of the two types located periodically at the nodes of a square grid with side εl in
staggered order, we obtain

cΓ = (cap (ω1) + cap (ω2))/(2l2). (5.6)

Formulas (5.4)–(5.6) follow from relation (3.9).
3. The resulting equation (5.3) was derived using potential theory. To extend the formulation of the contact

problem of a punch with a fine-grained base, for example, to the case of an elastic layer, we rewrite the averaged
problem in terms of linear elastic theory.

Thus, the formulation of the contact problem of a frictionless punch Γε pressed into an elastic half-space
includes the boundary conditions

σ31(U ε;x′, 0) = σ32(U ε;x′, 0) = 0, x′ ∈ R2;

Uε
3 (x′, 0) = w(x′), x′ ∈ Γε;

σ33(U ε;x′, 0) = 0, x′ ∈ R2 \ Γε.

Here σ3i(U ε) are the stress-tensor components. In this case, the contact pressure under the punch is given by

pε(x′) = −σ33(U ε;x′, 0), x′ ∈ Γε.

The solution U0(x) of the averaged problem should satisfy the system of Lamé differential equations in a
semi-infinite domain occupied by an elastic body, the frictionless boundary conditions

σ31(U0;x′, 0) = σ32(U0;x′, 0) = 0, x′ ∈ R2,

the condition of zero load increment outside the domain occupied by the punch, i.e.,

σ33(U0;x′, 0) = 0, x′ ∈ R2 \G,

and the averaged contact condition

−σ33(U0;x′, 0) =
πE

1− ν2
cΓ(w(x′)− U0

3 (x′, 0)), x′ ∈ G. (5.7)

We note that boundary condition (5.7) is condition (5.2) rewritten with allowance for the relations

σ33(U0;x′, 0) =
E

2(1− ν2)
∂u0

∂x3
(x′, 0), U0

3 (x′, 0) = u0(x′, 0),

which follow from Belyaev’s formulas (1.6) and (1.7).

770



Thus, the averaged contact boundary condition (5.7) is free from the assumption that the elastic body
occupies half-space and can be used to solve the contact problem of a punch with a fine-grained base pressed into
the flat boundary of an elastic foundation in the case of an elastic layer, plate, etc.

4. The assumption that the complement to the set Γε is connected in the case (1.1) is also of no significance
in the present approach. For example, an approximate solution of the contact problem of a so-called netlike punch
can be obtained in a similar manner (see example 2 in [8, Ch. 1, § 4]).

5. Using formula (2.8), we obtain

c0 = − 1
2π

∫ ∫
G

ϕ0(y) dy,

where ϕ(x′) is a solution of Eq. (4.3).
With allowance for relation (3.12), we have∫ ∫

G

ϕ0(y) dy = lim
ε→0

∑
(G)

F ij
ε ,

which agrees with the first formula (1.10) using notation (3.3).
Integration of both sides of Eq. (4.3) over the domain G yields

1
2π

∫ ∫
G

ϕ0(y) dy +
cΓ

2π

∫ ∫
G

ϕ0(y)
∫ ∫

G

dx′ dy

|x′ − y|
= |G|cΓ. (5.8)

Using formula (3.9), we write the right side of Eq. (5.8) as

|G|cΓ = lim
ε→0

∑
(G)

cij
ε . (5.9)

Comparing formula (5.4) with (5.8) and (5.9), we infer that the limiting value c0 of the translational capacity cε is
smaller than the total capacity of the punches in the system. Obviously, this is also true for the capacity cε.

We set

mG = min
y∈G

∫ ∫
G

dx′

|x′ − y|
, MG = max

y∈G

∫ ∫
G

dx′

|x′ − y|
.

From formula (5.8) follow the estimates

|G|cΓ

1 + MGcΓ
6 c0 6

|G|cΓ

1 + mGcΓ
.

We note that for a circular region G, the quantity MG exceeds mG by a factor of π/2 (see, e.g., [14, § 1.1.6]).
6. The resulting integral equation (4.4) of the averaged contact problem was obtained by the localization

method. Therefore, for the contact problem considered, the localization method can be rigorously substantiated
within the averaging theory [8]. We also note that estimate (3.10) was obtained by a method different from that
of [8].

7. Let us compare the results obtained above with those of [9]. First, the equations for determining the
averaged contact-pressure density differ radically, namely: in the case (1.1), Eq. (4.4) differs from the corresponding
equation for the case (1.12) by the presence of the first term.

Second, one can easily see that the asymptotic representation (3.18) for the true contact pressure is similar
to that obtained earlier (see [9, formula (25)]). In both cases, the representation has the form

pε(x1, x2) ' p0(x1, x2)f ij
ε (x1, x2), (x1, x2) ∈ ωij(ε). (5.10)

Here p0(x1, x2) is the averaged contact pressure at the center of the contact spot ωij(ε) and f ij
ε (x1, x2) is a function

that describes the pressure distribution over the contact spot ωij(ε). We also note that in both cases, the function
f ij

ε (x1, x2) has a root singularity on the boundary of the contact spot ωij(ε).
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In the case considered, from formulas (3.18) and (3.16) we obtain

f ij
ε (x1, x2) =

l2

2π cap (ω)
ϕ̂ij

ε (x1, x2),

1
ε2l2

∫ ∫
ωij(ε)

f ij
ε (x1, x2) dx1dx2 = 1. (5.11)

The quantity ε2l2 is equal to the area of the periodicity cell

Kij
ε = {x′ : ε−1(x1 − iεl, x2 − jεl) ∈ K}.

In the case of (1.12), the normalization condition (5.11) follows from formulas (23) and (28) of [9].
Taking into account the relation ∫ ∫

g∩Γε

pε(y) dy '
∫ ∫

g

p0(y) dy,

which is valid for any segment g of the domain G and normalization condition (5.11), from formula (5.10) we obtain∫ ∫
g

p0(y) dy '
∫ ∫

g

p0(y)f ij
ε (y) dy. (5.12)

In (5.12), it is understood that f ij
ε (y) = 0 for y ∈ Kij

ε \ ωij(ε).
We note that in the mechanics of rough elastic bodies in contact (see, e.g., [15]), the function f ij

ε (x1, x2) is
called a local contact intensity factor.

8. Finally, we note that in discrete contact problems, the number of punches N is usually a primary
parameter and the derivative parameter ε is calculated based on the geometry of punch location. In the case (1.1),
the inversion of (1.13) yields

ε ∼
√
|G|/(Nl2),

where l is the characteristic dimension of the domain G. In this case, the coefficient cΓ appearing in the averaged
problem and determined by formula (2.6) should be calculated by the formula

cΓ = cε/(ε2l2) = Ncε/|G|.

Here cε = cij
ε is the translational capacity of the punch ωij(ε) defined by formula (3.7).
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